
EECS2011 Fundamentals of Data Structures
(Winter 2022)

Q&A - Week 3 Lecture

Wednesday, February 2



Announcements

- Lecture W4 released (SLL and generics review)
- Assignment 1 (on SLLs) released on Monday.
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Hello professor. 
My question is, is inserting and deleting elements in the arraylist OP and is O(1)? 
I don't think it is but I want to make sure. Thank you.

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Resizable-array implementation of the List interface. Implements all optional list operations, 
and permits all elements, including null. …

The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. 
The add operation runs in amortized constant time, that is, adding n elements requires O(n) time. 

All of the other operations run in linear time (roughly speaking). The constant factor is low 
compared to that for the LinkedList implementation. 
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Hi professor. 
I was wondering, using generics, are we allowed to have different 
types of ‘elements’ in one chain of linked list? 
Because I remember you saying we shouldn't mix the types in 
eecs2030 but i wanted to make sure it is the same with linked lists. 
Thank you.
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When you asked us to try and find the size of a linked list, 
I came up with a solution very different from yours. 
My method simply has a “size” function in the Node class 
that returns 1 if the node pointer is null,
and otherwise returns 1+nextNode.size(). 
Would this be correct? 
In general, in different situations how can I tell which technique is better?
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Problem on SLL: Reversing a Chain of Nodes

You are asked to program this method:
          public Node<String> reverseOf(Node<String> input)
The returned node references the front of a separate chain of nodes 
representing the reverse of the input.
Requirement: The input node may or may not be null.



Problem on SLL: Reversing a Chain of Nodes?

Is this the correct algorithm 
for reversing a chain of nodes?
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