
EECS2011 Fundamentals of Data Structures
(Winter 2022)

Q&A - Week 3 Lecture

Wednesday, February 2

Announcements

- Lecture W4 released (SLL and generics review)
- Assignment 1 (on SLLs) released on Monday.
ji.IE#as-yv;d%EEn&gernmmmn

↳
grading : starters + additional

t

I. Recursion problems in Q&A suggestions in comments.
↳ n¥ necessary WT1 .

2. Son RT analysis of recursion in wb¥?

Hello professor.
My question is, is inserting and deleting elements in the arraylist OP and is O(1)?
I don't think it is but I want to make sure. Thank you.

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Resizable-array implementation of the List interface. Implements all optional list operations,
and permits all elements, including null. …

The size, isEmpty, get, set, iterator, and listIterator operations run in constant time.
The add operation runs in amortized constant time, that is, adding n elements requires O(n) time.

All of the other operations run in linear time (roughly speaking). The constant factor is low
compared to that for the LinkedList implementation.

✓

_

✓
0

✓

→ resize every once in a while , when array becomes
"full"

✓
- .

✗ ×

↳ average . 04)

I
> two resizing strategies

: constant increment us. doubting.

Hi professor.
I was wondering, using generics, are we allowed to have different
types of ‘elements’ in one chain of linked list?
Because I remember you saying we shouldn't mix the types in
eecs2030 but i wanted to make sure it is the same with linked lists.
Thank you.

± !→:*

µ
> parameter of a type

class Node 55£ Node<S←g→☒,pña☒EÉeiÑat ,
private__Node<E> next ;

Node< Integer> n=⑦
'

;
E- nl .setElement(" Tom")s✓

I. settlement L3-4IX}

Nodes Objects nlj-nw-N.de
-Object> c) ;

t

superclass
-

of every
class

0bj! - every
class "
" settlement "%),

a
subclass vi. settlement'nw_ Account.

of object ✗

{→ \
poor choiceE

;÷:÷⇒" Tom" generic type

Node< firing >
→ ;¥¥¥% can

store

Node <f¥ nl = red Nodes>("a
"

,
null),

nl
. setNext (new NodesT-n-erqX.mil) ,

When you asked us to try and find the size of a linked list,
I came up with a solution very different from yours.
My method simply has a “size” function in the Node class
that returns 1 if the node pointer is null,
and otherwise returns 1+nextNode.size().
Would this be correct?
In general, in different situations how can I tell which technique is better?

get
back

public at getfieec > {
if (head null) { return 0-3
"" { ' + next .ge#e,, , g)

here
""

4
→

§
→ nun

" mark£µ ""Éiµ →☒
✗ output = inputs
¥ Nodecfwug> output

= new Nodes> tinpot .get Element,
output . setwextlnew-Nodei-nput.ge#Uext.getElema-cDsn;D

Problem on SLL: Reversing a Chain of Nodes

You are asked to program this method:
 public Node<String> reverseOf(Node<String> input)
The returned node references the front of a separate chain of nodes
representing the reverse of the input.
Requirement: The input node may or may not be null.

Problem on SLL: Reversing a Chain of Nodes?

Is this the correct algorithm
for reversing a chain of nodes?

EH { I g.
I → nail µ

""

Laura
-10-11

reverse
currentOFI÷÷÷÷É⇒±i÷¥÷¥±→_

NI
.

